教育範文工作報告

2016大學物理實驗報告

本文已影響 3.74W人 

實驗報告是把實驗的目的、方法、過程、結果等記錄下來,經過整理,寫成的書面彙報。下面是小編爲大家整理的2016大學物理實驗報告,歡迎閱讀參考!

2016大學物理實驗報告

  【2016大學物理實驗報告1】

摘要:熱敏電阻是阻值對溫度變化非常敏感的一種半導體電阻,具有許多獨特的優點和用途,在自動控制、無線電子技術、遙控技術及測溫技術等方面有着廣泛的應用。本實驗通過用電橋法來研究熱敏電阻的電阻溫度特性,加深對熱敏電阻的電阻溫度特性的瞭解。

  關鍵詞:熱敏電阻、非平衡直流電橋、電阻溫度特性

  1、引言

熱敏電阻是根據半導體材料的電導率與溫度有很強的依賴關係而製成的一種器件,其電阻溫度係數一般爲(-0.003~+0.6)℃-1。因此,熱敏電阻一般可以分爲:

Ⅰ、負電阻溫度係數(簡稱NTC)的熱敏電阻元件

常由一些過渡金屬氧化物(主要用銅、鎳、鈷、鎘等氧化物)在一定的燒結條件下形成的半導體金屬氧化物作爲基本材料製成的,近年還有單晶半導體等材料製成。國產的主要是指MF91~MF96型半導體熱敏電阻。由於組成這類熱敏電阻的上述過渡金屬氧化物在室溫範圍內基本已全部電離,即載流子濃度基本上與溫度無關,因此這類熱敏電阻的電阻率隨溫度變化主要考慮遷移率與溫度的關係,隨着溫度的升高,遷移率增加,電阻率下降。大多應用於測溫控溫技術,還可以製成流量計、功率計等。

Ⅱ、正電阻溫度係數(簡稱PTC)的熱敏電阻元件

常用鈦酸鋇材料添加微量的鈦、鋇等或稀土元素採用陶瓷工藝,高溫燒製而成。這類熱敏電阻的電阻率隨溫度變化主要依賴於載流子濃度,而遷移率隨溫度的變化相對可以忽略。載流子數目隨溫度的升高呈指數增加,載流子數目越多,電阻率越小。應用廣泛,除測溫、控溫,在電子線路中作溫度補償外,還製成各類加熱器,如電吹風等。

  2、實驗裝置及原理

  【實驗裝置】

FQJ—Ⅱ型教學用非平衡直流電橋,FQJ非平衡電橋加熱實驗裝置(加熱爐內置MF51型半導體熱敏電阻(2.7kΩ)以及控溫用的溫度傳感器),連接線若干。

  【實驗原理】

根據半導體理論,一般半導體材料的電阻率 和絕對溫度 之間的關係爲

(1—1)

式中a與b對於同一種半導體材料爲常量,其數值與材料的物理性質有關。因而熱敏電阻的電阻值 可以根據電阻定律寫爲

(1—2)

式中 爲兩電極間距離, 爲熱敏電阻的橫截面, 。

對某一特定電阻而言, 與b均爲常數,用實驗方法可以測定。爲了便於數據處理,將上式兩邊取對數,則有

(1—3)

上式表明 與 呈線性關係,在實驗中只要測得各個溫度 以及對應的電阻 的值,

以 爲橫座標, 爲縱座標作圖,則得到的圖線應爲直線,可用圖解法、計算法或最小二乘法求出參數 a、b的值。

熱敏電阻的電阻溫度係數 下式給出

(1—4)

從上述方法求得的b值和室溫代入式(1—4),就可以算出室溫時的電阻溫度係數。

熱敏電阻 在不同溫度時的電阻值,可由非平衡直流電橋測得。非平衡直流電橋原理圖如右圖所示,B、D之間爲一負載電阻 ,只要測出 ,就可以得到 值。

·物理實驗報告 ·化學實驗報告 ·生物實驗報告 ·實驗報告格式 ·實驗報告模板

當負載電阻 → ,即電橋輸出處於開

路狀態時, =0,僅有電壓輸出,用 表示,當 時,電橋輸出 =0,即電橋處於平衡狀態。爲了測量的準確性,在測量之前,電橋必須預調平衡,這樣可使輸出電壓只與某一臂的電阻變化有關。

若R1、R2、R3固定,R4爲待測電阻,R4 = RX,則當R4→R4+△R時,因電橋不平衡而產生的電壓輸出爲:

(1—5)

在測量MF51型熱敏電阻時,非平衡直流電橋所採用的是立式電橋 , ,且 ,則

(1—6)

式中R和 均爲預調平衡後的電阻值,測得電壓輸出後,通過式(1—6)運算可得△R,從而求的 =R4+△R。

3、熱敏電阻的電阻溫度特性研究

根據表一中MF51型半導體熱敏電阻(2.7kΩ)之電阻~溫度特性研究橋式電路,並設計各臂電阻R和 的值,以確保電壓輸出不會溢出(本實驗 =1000.0Ω, =4323.0Ω)。

根據橋式,預調平衡,將“功能轉換”開關旋至“電壓“位置,按下G、B開關,打開實驗加熱裝置升溫,每隔2℃測1個值,並將測量數據列表(表二)。

表一 MF51型半導體熱敏電阻(2.7kΩ)之電阻~溫度特性

溫度℃ 25 30 35 40 45 50 55 60 65

電阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748

表二 非平衡電橋電壓輸出形式(立式)測量MF51型熱敏電阻的數據

i 1 2 3 4 5 6 7 8 9 10

溫度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4

熱力學T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4

0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4

0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9

4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1

根據表二所得的數據作出 ~ 圖,如右圖所示。運用最小二乘法計算所得的線性方程爲 ,即MF51型半導體熱敏電阻(2.7kΩ)的電阻~溫度特性的數學表達式爲 。

  4、實驗結果誤差

通過實驗所得的MF51型半導體熱敏電阻的電阻—溫度特性的數學表達式爲 。根據所得表達式計算出熱敏電阻的電阻~溫度特性的測量值,與表一所給出的參考值有較好的一致性,如下表所示:

表三 實驗結果比較

溫度℃ 25 30 35 40 45 50 55 60 65

參考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748

測量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823

猜你喜歡

熱點閱讀

最新文章

推薦閱讀